首页> 外文OA文献 >Executing Dynamic Data Rate Actor Networks on OpenCL Platforms
【2h】

Executing Dynamic Data Rate Actor Networks on OpenCL Platforms

机译:在OpenCL平台上执行动态数据速率actor网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Heterogeneous computing platforms consisting of general purpose processors(GPPs) and graphics processing units (GPUs) have become commonplace in personalmobile devices and embedded systems. For years, programming of these platformswas very tedious and simultaneous use of all available GPP and GPU resourcesrequired low-level programming to ensure efficient synchronization and datatransfer between processors. However, in the last few years several high-levelprogramming frameworks have emerged, which enable programmers to describeapplications by means of abstractions such as dataflow or Kahn process networksand leave parallel execution, data transfer and synchronization to be handledby the framework. Unfortunately, even the most advanced high-level programming frameworks havehad shortcomings that limit their applicability to certain classes ofapplications. This paper presents a new, dataflow-flavored programmingframework targeting heterogeneous platforms, and differs from previousapproaches by allowing GPU-mapped actors to have data dependent consumption ofinputs / production of outputs. Such flexibility is essential for configurableand adaptive applications that are becoming increasingly common in signalprocessing. In our experiments it is shown that this feature allows up to 5xincrease in application throughput. The proposed framework is validated by application examples from the videoprocessing and wireless communications domains. In the experiments theframework is compared to a well-known reference framework and it is shown thatthe proposed framework enables both a higher degree of flexibility and betterthroughput.
机译:由通用处理器(GPP)和图形处理单元(GPU)组成的异构计算平台已在个人移动设备和嵌入式系统中变得司空见惯。多年来,这些平台的编程非常繁琐,同时需要使用所有可用的GPP和GPU资源进行低级编程,以确保处理器之间的高效同步和数据传输。但是,在最近几年中,出现了一些高级编程框架,这些框架使程序员能够通过诸如数据流或Kahn流程网络之类的抽象来描述应用程序,而使并行执行,数据传输和同步由框架来处理。不幸的是,即使是最高级的高级编程框架也存在一些缺点,将它们的适用性限制在某些类型的应用程序中。本文提出了一种针对异构平台的,新的,具有数据流风味的编程框架,并且与以前的方法不同,它允许GPU映射的参与者具有数据依赖的输入消耗/输出产生。对于在信号处理中变得越来越普遍的可配置和自适应应用而言,这种灵活性至关重要。在我们的实验中表明,此功能最多可增加5个新的应用程序吞吐量。通过来自视频处理和无线通信领域的应用实例验证了所提出的框架。在实验中,将框架与众所周知的参考框架进行了比较,结果表明所提出的框架既具有较高的灵活性,又具有更好的吞吐量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号